
Frandos Engineering LLC

 FeSCADA & Arduino
Introduction
An automation application was developed to show the possibilities of FeSCADA. By
the end of this paper the reader will learn how FeSCADA can work with Arduino.

1. Description
2. Hardware
3. Sensors and actuators
4. Arduino program
5. FeMODBUS communication setup
6. FeSCADA project
7. Database setup
8. Web server development
9. Conclusions

1)Description
In the following pages an application is described for monitoring the temperature in
the home and outside, detect the presence of peoples in 2 different areas, and to be
able to start/stop: a buzzer, a LED, a room light and a fan. The outputs can be
switched on/off either from the local computer or remotely, from a web browser (i.e.
a mobile phone with internet access).

2)Hardware
The hardware is composed of one Arduino Mega board with an Ethernet shield and
an IO shield. We used an USB cable to connect and download the program and to
supply the voltage for hardware.

Arduino Mega board Ethernet shield IO shield

1 | P a g e

Frandos Engineering LLC

3)Sensors and actuators

Inputs

Two Passive Infra-Red (PIR) sensors. They are giving
On/Off signals if a person is moving in the scanning
area. The sensors sensitivity range between 6 to 7
meters (20 feet) and the detection angle is 110
degrees x 70 degrees.

One photoresistor sensor which is detecting light.

One thermistor to measure the ambient
temperature.

Thermistor formula:
1
T

=a+b ⋅ ln RT+c ⋅ (lnRT)
3

where: a = 1.4·10-3, , b = 2.37·10-4 , c = 9.9·10-8.

RT – is the Thermistor resistance

R2 – is the reference resistance (10kΩ))

u2 – is the voltage measured by Arduino with 10
bits precision. 0...5VDC will be converted to a
number between 0...1024.

U = uT + u2 = I · (RT + R2) => I = U / (RT + R2)

uT = RT · I = U – u2 => RT · U / (RT + R2) = U – u2

RT = R2 · (U / u2 – 1)

RT = 10000 · (1024 / u2 – 1)

One LM35 temperature sensor with the characteristics:

- temperature range: -55 oC to 155 oC

- output scale = 10 mV/oC

- output at 25oC = 250 mV

2 | P a g e

R
T

R
2

U (5VDC)

u
T

u
2

u
T

(10 kΩ)

I

Frandos Engineering LLC

Outputs

One Buzzer module to send an audible alarm.

One LED module to signal a visual warning.

Two solid state relays (SSR) with which we can switch on or off an electric load of up
to 15A, at 75 – 240VAC. The relay is commanded with 5VDC.

3 | P a g e

Frandos Engineering LLC

Arduino wiring pins.

Sensor/Actuator PIN Description

PIR1 - digital input 2 Presence sensor – zone 1

Hall magnetic - digital input 3 Magnetic field sensor

PIR2 - digital input 4 Presence sensor – zone 2

LED - digital output 8 Light signal

Buzzer - digital output 9 Sound signal

SSR 1 - digital output 11 Solid Sate Relay – Room light

SSR 2 - digital output 12 Solid State Relay – Fan start

LM35 temperature – analog input A0 Temperature sensor

Thermistor – analog input A1 Temperature sensor

Photoresistor – analog input A2 Light sensor

Hardware prices.

Name Unit
price

Qty Price Description

Arduino Mega $40 1 $40 Main board - microcontroller

Ethernet shield $25 1 $25 Ethernet TCP/IP

IO extension shield $10 1 $10 IOs Connection board

PIR detector $5 2 $10 Digital sensor - presence

Photoresistor $4 1 $4 Analog sensor - light

Thermistor $1 1 $1 Analog sensor - temperature

LM35 temperature $2 1 $2 Analog sensor - temperature

Buzzer $2 1 $2 Digital output - sound

LED $0.5 1 $0.5 Digital output - light

Solid State Relay

Panasonic AQA221VL

$23 2 $46 Digital output - relay

TOTAL = $140.5

4 | P a g e

Frandos Engineering LLC

If the SSR load is bigger than 5A then a heat sink is recommended. One can mount
the SSR on a metal plate or one can buy a heat sink.

Panasonic AQP-HS-J10A Standard heat sink (15A) - $25/unit x 2 = $50.

4)Arduino program
The Modbus TCP/IP protocol is used to communicate with Arduino. Modbus is a data
communication protocol originally published by Modicon in 1979 for use with its
PLCs. Modbus has become a de facto standard communication protocol and is now a
commonly available means of connecting industrial electronic devices. Modbus is
popular in industrial environments because it is openly published and royalty-free. It
was developed for industrial applications, is relatively easy to deploy and maintain
compared to other standards, and places few restrictions on the format of the data
to be transmitted.

Useful links:
1) h ttps://en.wikipedia.org/wiki/Modbus
2) https://www.arduino.cc/en/ArduinoModbus/ArduinoModbus

Arduino Program

#include <SPI.h>
#include <Ethernet.h>
#include <ArduinoModbus.h>

int i, j, iVal, iReg[10];
float fVal;
uint8_t values[10];

// Enter a MAC address and IP address for your controller below.
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

// The IP address will be dependent on your local network
IPAddress ip(192, 168, 1, 17);

// Initialize the Ethernet server library with the IP address and port you want to use
EthernetServer server(502);
ModbusTCPServer modbusTCPServer;
EthernetClient client;

void setup() {
 //initialize inputs:
 pinMode(2, INPUT); pinMode(3, INPUT); pinMode(4, INPUT);
 pinMode(5, INPUT); pinMode(6, INPUT); pinMode(7, INPUT);
 //initialize outputs:
 pinMode(8, OUTPUT); pinMode(9, OUTPUT); pinMode(10, OUTPUT);
 pinMode(11, OUTPUT); pinMode(12, OUTPUT); pinMode(13, OUTPUT);

5 | P a g e

Frandos Engineering LLC

 Serial.begin(9600); // Open serial communications and wait for port to open
 Ethernet.begin(mac, ip); // Start the Ethernet connection and the server
 if (Ethernet.hardwareStatus() == EthernetNoHardware) {
 // Check for Ethernet hardware present
 Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
 while (true) {
 delay(1); // do nothing, no point running without Ethernet hardware
 }
 }

 if (Ethernet.linkStatus() == LinkOFF) {
 Serial.println("Ethernet cable is not connected.");
 }
 server.begin(); // start the server
 Serial.print("server is at "); Serial.println(Ethernet.localIP());

 if (!modbusTCPServer.begin()) { // start the Modbus TCP server
 Serial.println("Failed to start Modbus TCP Server!");
 while (1);
 }

 //Configure 20 Modbus coils, inputs and holding registers starting at address 0x00
 modbusTCPServer.configureDiscreteInputs(0x00, 20);
 modbusTCPServer.configureCoils(0x00, 20);
 modbusTCPServer.configureHoldingRegisters(0x00, 20);
}

void loop() {
 EthernetClient client = server.available(); // listen for incoming clients
 if(client) {
 Serial.println("new client"); // a new client connected
 modbusTCPServer.accept(client); // let the Modbus TCP accept the connection

 while (client.connected()) {
 // poll for Modbus TCP requests, while client connected
 delay(10); modbusTCPServer.poll();

 iReg[0]++; //counter to check connection
 if(iReg[0]>999) iReg[0]=0; modbusTCPServer.holdingRegisterWrite(0, iReg[0]);

 //Analog Inputs
 iVal = analogRead(A0); //discard the first reading
 iVal = analogRead(A0); fVal=(3*fVal+iVal)/4; //software low pass filter
 iReg[1] = (int) fVal; modbusTCPServer.holdingRegisterWrite(1, iReg[1]);
 iReg[2] = analogRead(A1); modbusTCPServer.holdingRegisterWrite(2, iReg[2]);
 iReg[3] = analogRead(A2); modbusTCPServer.holdingRegisterWrite(3, iReg[3]);
 iReg[4] = analogRead(A3); modbusTCPServer.holdingRegisterWrite(4, iReg[4]);
 iReg[5] = analogRead(A4); modbusTCPServer.holdingRegisterWrite(5, iReg[5]);
 iReg[6] = analogRead(A5); modbusTCPServer.holdingRegisterWrite(6, iReg[6]);

 //Analog outputs
 iReg[7] = modbusTCPServer.holdingRegisterRead(7); analogWrite(44, iReg[7]);
 iReg[8] = modbusTCPServer.holdingRegisterRead(8); analogWrite(45, iReg[8]);

6 | P a g e

Frandos Engineering LLC

 //Digital Inputs and Outputs
 updateIO();
 }
 Serial.println("client disconnected");
 }
}

void updateIO() {
 for(i=1;i<7;i++) {
 j=1+i;
 modbusTCPServer.discreteInputWrite(i, digitalRead(j)); // read the inputs
 values[i] = modbusTCPServer.coilRead(i); // read the current value of the coil
 j=7+i;
 if (values[i]) digitalWrite(j, HIGH); else digitalWrite(j, LOW); // write the outputs
 }
}

5)FeMODBUS communication setup
The FeMODBUS software is a Modbus client. It will connect to Arduino, which is a
Modbus server to read inputs and to write outputs.

In the picture below FeMODBUS was setup to connect at the address 192.168.1.17
and to cyclically (every 100ms) send 4 requests:

 - Function 2 – read 10 digital inputs from address 0 and copy them locally in digital
inputs area, from address 0.

 - Function 3 – read 10 holding registers from address 0 and copy them locally in
holding registers area, from address 0.

 - Function 15 – write 6 coils (digital outputs) from local coils area, address 1, to
remote coils area, starting from address 1.

 - Function 16 – write 2 holding registers to remote addresses 7 and 8 from local
holding registers address 17 and 18.

7 | P a g e

Frandos Engineering LLC

Using the local registers of FeMODBUS, we define tags for the DDE communication
with FeSCADA. In the picture below one can see a snapshot of the Tags List dialog
window.

The tag name
“Reg8” is
assigned to
read the
holding register
number 8 from
the Remote
Server Number
(RSN) 1.

The tag name
“Reg7_Out” is
assigned to
write the
holding register
number 17 for
the same RSN
1.

8 | P a g e

Frandos Engineering LLC

6)FeSCADA project
The first step in a FeSCADA project is to define the DDE communication channels
and the tags. In the picture below one can see that we defined one DDE channel as
channel number 1: DDE_Application = “MB” and DDE_Topic = “TAGS”.

Every tag has an internal name used in FeSCADA and a DDE Name for
communication with other DDE servers.

From FeMODBUS the program will:

- read 6 inputs;

- read/write 5 outputs;

- read 6 registers;

- read/write 2 registers.

9 | P a g e

Frandos Engineering LLC

The tag “Temp_LM35”, reading the “Reg1” register from FeMODBUS, which is the
analog input A0 from Arduino, was scaled to show the value in Celsius degrees. For
this we set:

MaxEngValue = 500 OffsetValue= 0 MaxRawValue = 1024

This is because 5VDC is 1024 and for LM35 we have 250mV at 25oC with 10mV/oC.

The “Light_sensor” tag was scaled more simple, to show 100% when the input is
1024. MaxEngValue = 100 OffsetValue= 0 MaxRawValue = 1024

For the “Thermistor” tag we needed to write a logic program that will compute the
real temperature based on the measurement of the thermistor resistance. The
program is based on the thermistor formula presented at the beginning of this
paper.

10 | P a g e

Frandos Engineering LLC

The “Logic Trigger TagName” should be clear and “Logic Type” = Timer. In this way
the program is executed 10 times per second.

Also in this program, we converted the temperatures from Celsius degrees to
Fahrenheit degrees for both sensors: thermistor and LM35. For this we used
memory tags: “Log_R”, “Temp”, “Temp_F_Therm” and “Temp_F_LM35”. The
memory tags do not communicate with any DDE server. They are used as variables
inside FeSCADA project.

For the PIR sensors, which are read in FeSCADA as “Input1” and “Input3” tags we
have written a logic program with which we count how many times the sensors
were triggered.

The tag “Output1” is the LED from Arduino. It will turn on when either PIR sensor is
active.

11 | P a g e

Frandos Engineering LLC

“Person_Counting_1” and “Person_Counting_2” are memory tags in which these
counters are kept. This program is run also 10 times per second. The tags “Bit1”
and “Bit3” are used to count only once when a sensor becomes active, at the
raising edge of the signal.

Finally, we have built a panel (window) to show the data, and to put some indicators
and buttons. In the picture below one can see a snapshot of this panel.

The “Communication counter proof” is the register 0 from Arduino. If this number is
changing all the time from zero to 1000 and starting from zero again, this is a good
proof that the communication with Arduino is okay.

For the PIR sensors we used two text messages to show “Clear” when 0 (Off) and
“Person present” when 1 (On). Also 2 digital indicators are used which are changing
their color: red when 0 (Off) and green when 1 (On).

The temperatures are shown with 4 numeric displays, with 2 digit precision, in both
Celsius and Fahrenheit degrees.

The Light_sensor is shown with an analog indicator.

The “Reg6_Out” and “Reg7_Out” are values that can be changed by the user with
the aid of a slider or by double clicking the rectangle and dialing in a new number.

12 | P a g e

Frandos Engineering LLC

“Reg6_In” and”Reg7_In” are echoed values coming in from Arduino as different
registers, for confirmation.

In the lower left corner there are the buttons for commands to Arduino. The
commands can turn On or Off the: LED, buzzer, room light or fan.

The commands can run in 2 ways. In a local mode or in a remote mode. If the
“remote” tag is 0 (off) the user can control the top buttons locally. If the “remote”
tag is 1 (on) then a logic program will copy the bit values from a command tag
(“remote_cmd”) to each button. See the program in the picture below.

Also, when the remote tag is On, the tags “Reg6_Out” and “Reg7_Out” are
overwritten with the values from the tags “remote_cmd2” and ”remote_val2”.

This program is executed 10 times per second.

13 | P a g e

Frandos Engineering LLC

When the remote control is selected, the
remote values are read from a database.

7)Database setup
We installed MySQL on an Ubuntu web
server. We defined the database “storage”
and we created in it 2 tables:

- Command

- Temperatures

The “Command” table has 2 integers and 2
real numbers. One set of data that is updated
or read.

The “Temperatures” table has 3 real
numbers and 2 integers. One set of values
that is updated or read.

After that we installed the MySQL drivers for
ODBC access from our Windows computer to
the remote MySQL database.

In FeSCADA we
defined two database
queries. Each one will
be executed every 5
seconds.

The first will update,
in the table
“Temperatures”, the
values from our
temperature and light
sensors and the
counters from the PIR
sensors.

14 | P a g e

Frandos Engineering LLC

The SQL command is like this:

UPDATE Temperatures SET

temp1=#tag1#, temp2=#tag2#, temp3=#tag3#,

c1=#tag4#, c2=#tag5# ;

The second database query will read, every 5 seconds, from the table “Command”,
the values: C1, C2, V1, V2, and will copy them in the tags: “remote_cmd”,
“remote_cmd2”, “remote_val1” and “remote_val2”.

In this way the remote control of the Arduino can be done by writing different values
for “remote_cmd” in the MySQL database.

15 | P a g e

Frandos Engineering LLC

8)Web server development
On the Ubuntu server, apart of Apache web server and MySQL database, we
installed PHP support. We developed a web page with HTML, CSS, JavaScript and
PHP. The server is home based and the home router is setup to forward the http
requests to this server.

The following web address is free dynamic DNS (from https://www.noip.com) and is
based on the IP address that our Internet provider has assigned to us.

http://frandos.ddns.net/index.php

In this web page we created a panel section with radio buttons selector, a sliding
button and 3 push buttons.

The top of the panel will change the value of command word C1 and the slider will
alter the value of C2. The button SEND will send an HttpRequest to update the
database. The button READ will send an HttpRequest to read the values from the
database and update the option and the slider values.

16 | P a g e

Frandos Engineering LLC

The bottom of the panel will show the data from the table Temperatures. The
information will be refreshed every 5 seconds.

In the following pages there are presented some snippets from the HTML and
JavaScript program, executed in the browser, and from the PHP programs, executed
on the server side.

HTML page

……………………..

<li id="Panel">

<blockquote>

<p> PANEL</p>

<button type="button" onclick="loadDoc('Command2.php', myFunction5)">READ </button>

<button type="button" onclick="sendDoc('Command3.php', myFunction6)">SEND </button>

<label readonly id="text1"> </label>

<form name='Commands' oninput="x_comm1.value = parseInt(comm1.value); y_comm2.value =
parseInt(comm2.value); document.getElementById('text1').innerHTML = '';">

<pre>

Commands:

<input type='radio' size='3' id="comm1" name='comm1' value=0> Nothing

<input type='radio' size='3' id="comm1" name='comm1' value=1> Buzzer

<input type='radio' size='3' id="comm1" name='comm1' value=2> Light

<input type='radio' size='3' id="comm1" name='comm1' value=3> Light & Buzzer

<input type='radio' size='3' id="comm1" name='comm1' value=6> Light & Fan

<input type='radio' size='3' id="comm1" name='comm1' value=7> Light & Fan & Buzzer

0 <input type="range" id="comm2" name="comm2" min="0" max="255"> 255

<output name="y_comm2" for="comm2"></output> <input type="hidden" id=x_comm1 name="x_comm1"
value=0>

</pre>

</form>

<button type="button" onclick="loadDoc('Values.txt', myFunction3)">Info </button>

<p readonly id="value">
 </p>

BACK

</blockquote>

………………………………..

<script>

loadDoc('Command2.php', myFunction5);

var myVar = setInterval(myTimer, 5000);

17 | P a g e

Frandos Engineering LLC

function myTimer(){

loadDoc('Temperature.php', myFunction4);

}

function loadDoc(url, cFunction) {

var xhttp;

xhttp=new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

cFunction(this);

}

};

xhttp.open("GET", url+"?t="+Math.random(), true);

xhttp.send();

}

function sendDoc(url, cFunction) {

var xhttp;

xhttp=new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

cFunction(this);

}

};

xhttp.open("POST", url, true);

var x = document.getElementById("x_comm1");

var y = document.getElementById("comm2");

var text1 = "comm1="+x.value+"&comm2="+y.value;

xhttp.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

xhttp.setRequestHeader("Content-length", text1.length);

xhttp.setRequestHeader("Connection", "close");

xhttp.send(text1);

}

function myFunction3(xhttp) {

document.getElementById("value").innerHTML = xhttp.responseText;

}

function myFunction4(xhttp) {

var myVals = JSON.parse(xhttp.responseText);

document.getElementById("value").innerHTML =

"Temp. Inside = " + myVals.temp1 + " [C] " +

"
Temp.Outside= " + myVals.temp2 + " [C] " +

"
Light sensor = " + myVals.temp3 + " [%]" +

"
Move counter#1 = " + myVals.c1 +

18 | P a g e

Frandos Engineering LLC

"
Move counter#2 = " + myVals.c2 ;

}

function myFunction5(xhttp) {

var myArduino = JSON.parse(xhttp.responseText);

document.forms["Commands"]["comm1"].value = myArduino.cmd1;

document.forms["Commands"]["comm2"].value = myArduino.cmd2;

document.forms["Commands"]["x_comm1"].value = myArduino.cmd1;

document.forms["Commands"]["y_comm2"].value = myArduino.cmd2;

document.getElementById("text1").innerHTML = "";

}

function myFunction6(xhttp) {

document.getElementById("text1").innerHTML = xhttp.responseText;

}

</script>

</body></html>

PHP program – Temperatures.php (Executed every 5 seconds)

<?php

require_once 'login.php';

$mysqli = new mysqli($db_hostname, $db_username, $db_password, $db_database);

if($mysqli->connect_error) {

exit('Could not connect');

}

$temp1 = -1.0;

$temp2 = -1.0;

$temp3 = -1.0;

$c1 = -1;

$c2 = -1;

$sql = "SELECT * FROM Temperatures";

$stmt = $mysqli->prepare($sql);

$stmt->execute();

$stmt->store_result();

$stmt->bind_result($temp1, $temp2, $temp3, $c1, $c2);

$stmt->fetch();

$stmt->close();

printf("{\"temp1\": \"%.02f\", \"temp2\": \"%.02f\", \"temp3\": \"%.02f\", \"c1\": \"%u\", \"c2\": \"%u\" }",

$temp1, $temp2, $temp3, $c1, $c2);

?>

19 | P a g e

Frandos Engineering LLC

PHP program – Command2.php (READ button)

<?php

require_once 'login.php';

$mysqli = new mysqli($db_hostname, $db_username, $db_password, $db_database);

if($mysqli->connect_error) {

exit('Could not connect');

}

$sql = "SELECT * FROM Command";

$stmt = $mysqli->prepare($sql);

$stmt->execute();

$stmt->store_result();

$stmt->bind_result($C1, $C2, $V1, $V2);

$stmt->fetch();

$stmt->close();

printf("{\"cmd1\": \"%u\", \"cmd2\": \"%u\", \"val1\": \"%.02f\", \"val2\": \"%.02f\" }",

$C1, $C2, $V1, $V2);

?>

PHP program – Command3.php (SEND button)

<?php

require_once 'login.php';

$mysqli = new mysqli($db_hostname, $db_username, $db_password, $db_database);

if($mysqli->connect_error) {

exit('Could not connect');

}

if (isset($_POST['comm1']) && isset($_POST['comm2'])) {

$c1 = get_post($mysqli, 'comm1');

$c2 = get_post($mysqli, 'comm2');

$sql = "UPDATE Command SET C1='$c1', C2='$c2' ";

$stmt = $mysqli->prepare($sql);

$result = $stmt->execute();

 if(!$result) echo "Update command failed:" . mysqli_error() . "
,
";

 else {

 $stmt->close();

 echo "OK";

 }

}

else echo "No wright parameters";

function get_post($db_server, $var) {

return mysqli_real_escape_string($db_server, $_POST[$var]);

}

?>

20 | P a g e

Frandos Engineering LLC

9)Conclusions
An application of FeSCADA software with an Arduino microcontroller was presented.

The Arduino has sensors and actuators connected to its input and output pins.

Ethernet communication is used to exchange Modbus TCP messages between
Arduino and FeMODBUS software. FeSCADA is exchanging DDE messages with
FeMODBUS.

The data from the sensors is processed with logic programs in FeSCADA to compute
mathematical formulas (like the thermistor formula) and other logic or arithmetic
algorithms.

Different kinds of actuators: LED, buzzer, room light, fan, are controlled with push
buttons from FeSCADA.

The control can be switched between local and remote. The remote control is
possible by using a database.

An AMP (Apache – MySQL – PHP) server was setup and a web page was created to
allow the reading and writing to a database.

With this web page, and by selecting remote access in MySCADA project, it is
possible to read the home temperature, the light level, the presence sensors
counters, and to control home appliances with a mobile phone connected to the
Internet.

21 | P a g e

