
Frandos Engineering LLC

1 | P a g e

 FeSCADA – Logic programs

Introduction
A new utility called “Programs” was added to FeSCADA software. With this feature the user can setup

and run logic programs.

This chapter will cover the following topics:

1. Description

2. Abstract Syntax Trees

3. If… then… else instruction

4. Operations list

5. Programs setup and run

6. Application examples

7. Conclusions

1) Description
In a classical automation application the PLC will execute the logic program to control the machine. The

SCADA software will act like an HMI, to allow the operator to see indicators and to press command

buttons. The PLC was built for speed and specialized for Boolean logic, timers and counters.

The possibility of running a logic program with the SCADA software can add a degree of freedom to the

automation. It can help to solve more difficult tasks, or to develop more complex applications. For

example, in many situations a single SCADA software station is supervising more than one machine, each

one with its own PLC. In these cases a logic for synchronization and for interlocking between machines

has to be implemented. This logic doesn’t need to be fast. The synchronization logic, in the past, was

done with a master PLC. But nowadays it can be done with the SCADA software.

Another family of applications is using only remote terminal units for inputs and outputs (IO RTU) and no

PLCs. In these cases the SCADA software can run the logic control program for inputs and outputs. Many

small and medium automation applications are simple and slow enough to be implemented like that.

Examples of logic programs use within SCADA software:

- Scaling tags after mathematical equations

- Complex mathematical operations like: sin, cos, log, exp, etc.

- Special alarms implemented with mathematical algorithms

- Logic at bit level, value level and/or expression level

Two of the most important demands from a logic program in a SCADA software are to be easy to

program/change it and load/reload it. The easiest way to write a program on computers is by writing

text. The text program is called source code. From here there are 2 ways to go. Use a compiler or an

interpreter. The compiler is taking the source code and is translating it to machine code. The user will

execute the machine code. The interpreter is translating and executing the source code without

translating and creating a machine code first.

Frandos Engineering LLC

2 | P a g e

FeSCADA logic programs are created by writing text and are using an interpreter to run the source code.

Every program is saved as a text in a file. The text is read from the file and interpreted by a text parser.

Key words, tag names, numbers and special characters are identified and separated in a list. If all tokens

are recognized (no syntax errors), the next step is to create an intermediate representation, called

abstract syntax trees (AST), in the memory of the computer, and to build and link the trees with pointers

to: statements, expressions, operations and operands. Once this is done the program can be executed.

The work to create the abstract syntax trees is done when the program starts or when the user explicitly

wants to reload a modified program. After that the program is executed from memory.

2) Abstract Syntax Trees
In computer science, a tree list is a data structure that consists of one or more nodes organized in a

hierarchy. The tree has one root which is the top node. All nodes, except the root, have one parent. A

node without children is called a leaf node. If a node is not root or leaf is called interior node.

The abstract syntax tree (AST) is a tree list representation of an abstract syntactic structure of a text

(source code) written in a formal language, where each interior node and the root node represent

operations and the leaf nodes represent operands. The expression:

 ���1 = 2 ∗ ���2 + 5
.� ∗ ���3 + 10

has the abstract syntax tree representation from the picture below. The circles represent the leaves of

the tree, which are constant numbers or pointers to variables. The squares represent the root node and

interior nodes, which are operations.

The order of construction is important. A precedence number is assigned to different types of

operations. For example, the multiplication is done before addition. The assignment operation, of the

result on the right of “=” to Tag1, is the last operation, with the lowest preceding level.

The evaluation of the expression

above starts from the top of the

tree. The query is going down on

the branches of the tree, to the

leaves level. The operations are

performed from bottom to top.

Once an operation is completed,

the result is ready, as a left or right

operand, for the next operation

above.

Very complicated expressions can

be represented as abstract syntax

trees in the memory of the

computer. The execution is fast

because all operations are

executed in the memory.

+

+

=

*

10

*

Tag3

Tag1

pow

5 2.5
2 Tag2

Frandos Engineering LLC

3 | P a g e

3) If… then… else… instruction
if… then… else…; is the general form for a logic instruction. The instruction is composed of 3(three)

statements, if…A… statement, then…B… statement and else… C… statement. If the value of expression A

is positive (not 0 and not negative) then the expression B will be executed, else the expression C.

A program consists of one or more consecutive instructions. Consecutive instructions are separated by

semicolon, “;”. For any instruction the if… and else… statements can be omitted. In these cases the

expression is interpreted as a then… statement that is always executed. No then… keyword is necessary.

A special case is the use of curly brackets, “{ }”. If an open curly bracket is detected after an if…

statement then the next instructions, up to the next close bracket, “}”, are executed if the previous if…

statement expression is true (positive), and are not executed if the expression is false (zero or negative).

4) Operations list
The operations supported in the FeSCADA logic programs are listed in the table below. The precedence

number, from 1 to 8, is indicated for each operation. Eight is the first operation evaluated and 1 is the

last. In case of an open parenthesis, “(“, then the operations inside the round brackets will have a higher

precedence, with a level up, 8+x, where x is the typical precedence number. Each open round bracket

will increase the level of precedence, (N+1)*8+x. Each close round bracket will decrease the level,

(N-1)*8+x. The operations can be used in any of the 3 statements of the if… then… else… ; instruction.

No Precedence Operation Explanations

1 5 + Addition

2 5 - Subtraction

3 6 * Multiplication

4 6 / Division

5 6 % Modulo division

6 7 $ Power, a$x -> ax

7 7 << Shift Left – bit level, example: a<<2

8 7 >> Shift Right – bit level, example: a>>1

9 7 @ Bit number, a@3 is the value of bit number 3

10 4 < Less – comparison (result 0 or 1), example: if (a < 10) then… ;

11 4 <= Less or equal – comparison

12 4 > Greater – comparison

13 4 >= Greater or equal – comparison

14 4 == Equal – comparison

15 4 != Not equal – comparison

16 4 & AND at bit level, example: if (a & 3) > 0 then… ;

17 4 | OR at bit level

18 4 ~ NOT at bit level, example: ~3 as a byte is 11111100

19 4 ^ XOR at bit level

20 2 AND AND logic, example: if (Tag1>10 AND Tag1<20) then Tag2=2*Tag1;

21 2 OR OR logic

22 3 NOT NOT logic, one operand, example: if NOT Tag1>10 then… ;

Frandos Engineering LLC

4 | P a g e

5) Programs setup and run
To open the Programs setup dialog window, select from the menu Utils->Programs. A notification

message will inform if no data was

previously configured. Press OK to

open the dialog window. The Logic List

is on the top left of the window. The

Program Edit text box is on the top

right corner. The Application Tags List

is in the bottom right corner.

To setup a logic program first type a

name in the Name text box. Then

choose between Timer and Time/Date

for the Logic Type.

If the choice is Timer, a trigger tag can

be selected from the Application List

with the << button.

If no trigger tag is selected the

program will be executed by default at

maximum speed, 10 times per second

(100ms cycle).

23 1 = Assignment, example: Tag1 = 2+5*Tag2;

24 8 SIN sin(x), the next operations have only one operand

25 8 COS cos(x), example: Tag1 = 2*COS(Tag2/180*3.1415);

26 8 EXP exp(x), ��

27 8 SQRT Sqrt(x), √�

28 8 LOG log(x)

29 8 LOG10 log10(x)

30 8 ABS abs(x)

31 8 TAN tan(x)

32 8 ATAN atan(x)

33 8 ASIN asin(x)

34 8 ACOS acos(x)

35 8 RAND RAND(X) is generating a random number between 0 and X. If X is

integer the result is integer. If X is a real number the result is a real

number.

36 8 BCD BCD(X) is returning an integer Binary Coded Decimal

(1234 => 0001 0010 0011 0100)

37 8 DCB DCB(X) is the reverse of BCD, returning an integer

Decimal Coded Binary (0000 0011 0100 0010 => 0342)

Frandos Engineering LLC

5 | P a g e

If a trigger tag is selected then a Timer Interval [sec] is required. The timer is started when the trigger

tag evaluation is true in comparison with the Trigger Value. After the Time Interval [sec] is passing the

program will be executed. If the Cyclic Logic? is Yes the execution will repeat at this time interval. If it is

No, it will execute only once. The trigger tag has to change its value and then retake the trigger value

again for the program to execute again.

If the Logic Type choice is Date/Time, the user can select to execute

the logic program every: Hour, Day, Week, Month, Year.

Press Add to insert the new logic in

the Logic List table. Select the logic

with the mouse. A warning window

will inform that there is no program

saved for this logic. Press OK and

write a logic program in the Program

Edit text box. Press Save to save the

program in a text file. A pop up

window will confirm.

If the program was just added to the

Logic List table, the changes are active

after closing Logic Setup window by

pressing OK, and after FeSCADA is

restarted. After restart, if the program

is modified and saved, it can be

reloaded with the Reload button. No

restart is necessary. Also the program

can be executed by pressing Execute

button, even if the execution

condition was not met yet.

Program Status is showing the

number of program instructions loaded and prepared

for execution. The last information indicates how

many instructions were executed at the last run.

If an instruction in the program has any syntax error,

the program is not executed. Program Status will

specify the instruction number, the term number in

instruction and an error type. The Show button will

become visible. If the user is pressing the Show

button, the instruction with error is highlighted in

blue. In the picture on the right the tag MemRec21

was not found in the Application Tags List.

The user can correct the error, save the program and

reload it. If the program is correct it will start running immediately.

Frandos Engineering LLC

6 | P a g e

The table below shows the syntax errors detected by FeSCADA interpreter.

6) Application examples
There are many possible applications that can be done using the Programs utility of FeSCADA software.

In the table below some examples are provided.

Error type Explanations

1 unknown token

2 no left operand

3 no right operand

4 no left variable for assign (=) operation

5 variable type is not integer or float

6 too many open parenthesis (

7 too many close parenthesis)

Description Program example

Boolean logic

if sensor1 AND sensor2 AND NOT sensor3

 then Start_Pump = 1

 else Start_Pump = 0;

Scaling tags after mathematical

equations

(with other logic decisions for

the limits of the result)

Tag1 = 10*EXP(Tag2) +10*LOG(Tag3);

if Tag1 > 100

{

 Tag1 = 100;

 Tag2 = Tag2 – 0.1;

 if Tag3 > 0 then Tag3 = -Tag3;

}

Complex mathematical

operations

Angle1 = ASIN(SIN(tagA)*COS(tagB) + COS(tagA)*SIN(tagB));

Special alarms

If the user is defining the integer

memory tags: SysHour,

SysMinute, SysSecond,

SysDayOfMonth,

SysDayOfWeek, the program will

write in them the actual values

read from the real time clock of

the computer. These tags can be

used in numerous logic

programs.

if SysDayOfWeek >=1 AND SysDayOfWeek <=5

{

 if SysHour < 8 OR SysHour > 16

 {

 hours = 0;

 Production_Alarm = 0;

 }

 if SysHour >= 8 AND SysHour <= 16

 {

 hours = SysHour - 7;

 Planed_Production = 1000*hours;

 if (Planed_Production – Current_Production) > 500

 then Production_Alarm = 1

 else Production_Alarm = 0;

 }

}

Logic at bit level if Temperature1 > 100 then Alarms = Alarms | (1<<5);

if Temperature1 < 95 then Alarms = Alarms & (~(1<<5));

Frandos Engineering LLC

7 | P a g e

7) Conclusions
With FeSCADA software it is possible to setup and run logic programs. The programs can be run

continuously, at special time/dates, or as a logic comparison result of a trigger tag value with a constant.

Tags can be used in any logic expression, at the bit level or value level, and the result of complex

expressions can be assigned to any numeric tag.

